
RemoteControlRelay

VIA University College

Project Report

RemoteControlRelay

Group #10

Stanislav Ondruš (224378)

Ionela Marinuta (226484)

Slavomír Šimko (224433)

Valeriu Arhip (224165)

Course SEP I2

Supervisors

Irena Valerieva Asenova

Mona Wendel Andersen

Date 31 May 2015

Group 10 RemoteControlRelay 2

Abstract

This report documents each step taken from the first analyses to the final tests done for the

completion of the Remote Control Relay System. It starts with an introduction which provides some

background description and specifies the system’s purpose and relevance. In the Analysis section,

the functional and non-functional requirements can be found, as well as the use cases derived from

them. The domain class model and use case/activity diagrams are also in this section. The next part

of the report concerns the design aspect of the system. It includes a detailed design class model,

defines the design patterns used and why, and describes how the database was designed. The

design of the two Graphical User Interfaces is also explained here. The Implementation section of

this report records how the designs were carried out. It generously details the steps taken to reach

an MVC-architecture Client-Server system combined with Observer, Iterator, and Singleton design

patterns. Following this, the Testing section consist of an overview of all the use cases and the tests

conducted to determine whether or not they have been successfully completed in the system.

Towards the end of the report, the Discussion focuses on the positive and negative aspects of the

final product; which parts were implemented well and which parts still need improvement. Finally,

the conclusion wraps up the previous sections and contains some final remarks on the project.

Group 10 RemoteControlRelay 3

Table of Contents

Abstract... 2
1. Introduction .. 5
2. Analysis... 6

2.1 Requirements .. 6
2.1.1 Use case diagram .. 7
2.1.2 Use case summary... 7
2.1.3 Use case description .. 8

2.2 Domain class model ... 8
2.3 Activity Diagram... 10

3. Design... 11
3.1 Design class model ... 11
3.2 Client-Server System: RMI ... 12
3.3 Design patterns.. 12

3.3.1 Model-View-Controller .. 12
3.3.2 Observer .. 13
3.3.3 Iterator .. 13
3.3.4 Singleton .. 13

3.4 Database design... 14
3.5 GUI Design .. 15

3.5.1 Client GUI ... 15
3.5.2 Server GUI .. 16

3.6 Hardware .. 17
3.6.1 Relay.. 17
3.6.2 Arduino .. 18

3.7 System security.. 19
3.7.1 Database Password Encryption ... 19
3.7.2 Client Login Hash Function.. 19

4. Implementation ... 20
4.1 Client-Server System: RMI ... 20
4.2 Design patterns.. 22

4.2.1 Model-View-Controller .. 22
4.2.2 Observer .. 28
4.2.3 Iterator .. 31
4.2.4 Singleton .. 33

4.3 System security.. 34
4.3.1 Database Password Encryption ... 34
4.3.2 Client Login Encryption .. 35

5. Testing .. 36
6. Discussion ... 38
7. Conclusion... 39
8. References .. 40

Group 10 RemoteControlRelay 4

LIST OF FIGURES
Figure 1 - Use Case diagram ... 7

Figure 2 - Use Case: Register User ... 8

Figure 3 - Domain Class Model.. 9

Figure 4 - Activity Diagram Register User ... 10

Figure 5 - Design Class Model ... 11

Figure 6 - Table History and Table User .. 14

Figure 7 - Client GUI Logged In.. 15

Figure 8 - Client GUI History ... 15

Figure 9 - Server GUI Main ... 16

Figure 10 - Relay (connected) ... 17

Figure 11 - Relay (disconnected) ... 17

Figure 12 - Arduino ... 18

Figure 13 - Encrypted Passwords in the Database ... 19

Figure 14 - RMI diagram... 20

file:///F:/Dropbox/Stanley-Slavo-Valeriu-Nela/SEP2/Reports%20+%20Documents/final/Project%20Report%20-%20Group%2010%20-%20Final.docx%23_Toc420853303
file:///F:/Dropbox/Stanley-Slavo-Valeriu-Nela/SEP2/Reports%20+%20Documents/final/Project%20Report%20-%20Group%2010%20-%20Final.docx%23_Toc420853305
file:///F:/Dropbox/Stanley-Slavo-Valeriu-Nela/SEP2/Reports%20+%20Documents/final/Project%20Report%20-%20Group%2010%20-%20Final.docx%23_Toc420853306
file:///F:/Dropbox/Stanley-Slavo-Valeriu-Nela/SEP2/Reports%20+%20Documents/final/Project%20Report%20-%20Group%2010%20-%20Final.docx%23_Toc420853307
file:///F:/Dropbox/Stanley-Slavo-Valeriu-Nela/SEP2/Reports%20+%20Documents/final/Project%20Report%20-%20Group%2010%20-%20Final.docx%23_Toc420853308
file:///F:/Dropbox/Stanley-Slavo-Valeriu-Nela/SEP2/Reports%20+%20Documents/final/Project%20Report%20-%20Group%2010%20-%20Final.docx%23_Toc420853309
file:///F:/Dropbox/Stanley-Slavo-Valeriu-Nela/SEP2/Reports%20+%20Documents/final/Project%20Report%20-%20Group%2010%20-%20Final.docx%23_Toc420853310
file:///F:/Dropbox/Stanley-Slavo-Valeriu-Nela/SEP2/Reports%20+%20Documents/final/Project%20Report%20-%20Group%2010%20-%20Final.docx%23_Toc420853311

Group 10 RemoteControlRelay 5

1. Introduction

Home automation systems, previously only a feature of science fiction writing, have been growing increasingly

popular over the past few years. This is mostly due to greater affordability and simplicity through smartphone

and tablet connectivity. These systems combine ease, security and energy efficiency to provide a comfortable
environment to live in.

Top tier home automation systems allow control over

lights, cameras, thermostats, door locks, alarm systems

and the possibility to add intelligence to virtually all

electronic devices found in a home. Systems such as the

ones proposed by Control4™ and Vera™ are all-in-one

solutions to cover the entire building, including indoor

and outdoor control. Since are so many possibilities and levels of automation, a new user can start small, with a
few climate control changes, and gradually expand to customize home security and entertainment systems.

It all starts with a controller, the “brain behind all the automation magic”, and

each company offers a range of them, depending on the customer’s needs.

Vera™ offers controllers for basic and advanced users, as well as small

businesses. An interface is then required to access the controller, usually using a

mobile application, software program, or online account. Control4™, for

example, permits the use of many interfaces, including a TV remote,

smartphone, tablet, or computer with internet access. Thus, not only can a user control the various components
in their home from inside, but there is also the possibility of accessing the home remotely.

The RemoteControlRelay system is inspired by systems which companies like the ones mentioned above offer.

Admittedly, it is much simpler and meant to demonstrate only the use of a client server system to gain remote
access to some devices using a controller (the Arduino board, Section 3.5.2) and a few relays (Section 3.5.1).

The system is designed for a single household, and an account may be set up for each member, complete with

customizable access rights. One person in the household will act as administrator and have access to the server

side interface, where the options of adding, updating, deleting, and viewing user data are provided. The rest of

the users will access the system through the client side interface, where they can login to their accounts and

control devices according to their permissions. A database will store user data and their pr ivileges, and keep track
of all their actions in a history log.

Note that allowing for customizable access rights via separate accounts for each household member is a feature

which sets this system apart from the others.

Group 10 RemoteControlRelay 6

2. Analysis

2.1 Requirements
Note: The admin has access to the server-side GUI, and as such, can control the communication link and other

users’ accounts (the admin can also be a user).

Functional:

1. The admin must be able to add new accounts. The system must store a username, an encrypted

password, and specific access rights for each account.

2. The admin must be able to update user information. The system must modify and save user passwords

and access rights.

3. The admin must be able to delete user accounts.

4. The admin must be able to start and stop serial communication between the system and Arduino.

5. The user must be able to log in to the system using a predefined username and password.

6. The user must be able to log out of their account.

7. The user must be able to control (turn on or turn off) the available devices with the push of a button.

8. The admin must be able to view a list of current users registered in the system.

9. The admin/user must be able to view history, i.e. the list of actions taken place in the last 60 days.

Non-functional:

1. The system must use a client server architecture.

2. The system must store data in a MySQL database.

3. The system must use an Arduino circuit board.

Group 10 RemoteControlRelay 7

2.1.1 Use case diagram
The requirements mentioned above are used for creating the use case diagram. This high-level interaction

diagram shows what the system should be able to do. It will be used for presenting the functionality of the

program to the Administrator and Client, shown in the diagram in Figure 1.

Figure 1 - Use Case diagram

2.1.2 Use case summary
The following list contains a short description of the actions each use case involves:

 Log In: The User should be able to log in to the system, without interference from other users already

logged in.

 Log Out: The User should be able to log out from the system.

 Control Appliances: The User should be able to turn ON/OFF any device that is connected to the Arduino

board.

 View History: The User and Administrator should be able to view a list of actions taken place in any

selected range.

 Start/Stop Serial Communication: The Administrator should be able to start/stop serial communication

between system and Arduino, by specifying the port number.

 Register User: The Administrator should be able to create new accounts that contain a legit username,

password and access rights.

 Update User: The Administrator should be able to update User information, such as: password and

access rights.

 Delete User: The Administrator should be able to delete existing Users.

 View Users: The Administrator should be able to view a list of current Users registered in the system.

Group 10 RemoteControlRelay 8

2.1.3 Use case description
The use case diagram and summary provide a general overview of the functions of the system. In the following

part, these functions will be described in further detail by examining action by action how the task will be

performed, i.e. what the system does in response to actions performed by the Administrator/User.

Figure 2 - Use Case: Register User

Figure 2 shows the use case description for RegisterUser. It describes how this function works under different

conditions. The rest of the use case descriptions can be found in Appendix A.

2.2 Domain class model
The domain class model describes our system as a concept. It has no methods or solutions included. The only

items included in this concept are classes and their expected relations. The domain model serves as a tool for

setting the overall structure of the system.

Group 10 RemoteControlRelay 9

Fi
gu

re
 3

 -
D

o
m

ai
n

 C
la

ss
 M

o
d

e
l

Group 10 RemoteControlRelay 10

2.3 Activity Diagram
The following activity diagram describes the use case RegisterUser and serves as a clear-cut, step by step

illustration of how the use case works. Each text box represents an action taken by either the Administrator or

the System, while the rhombus represents a decision node, where more outcomes are possible from one action.

The rest of the Activity Diagrams can be found in Appendix B.

Figure 4 - Activity Diagram Register User

Group 10 RemoteControlRelay 11

3. Design

3.1 Design class model
This diagram is an evolved version of the domain class model, and describes all relations between all classes in

detail. It also includes all methods and attributes. The design class model is continuously updated and modified

throughout the entire development process. For a better view of the diagram see Appendix C.

Figure 5 - Design Class Model

Group 10 RemoteControlRelay 12

3.2 Client-Server System: RMI
To establish the client server connection, Java Remote Method Invocation is used in this system. RMI is a Java

API which facilitates object function calls between Java Virtual Machines (JVMs). Thus, one JVM can invoke

methods belonging to an object stored in another JVM.

How RMI works:

 RMI uses a network-based registry to keep track of the distributed objects. The server object makes

a method available for remote invocation by binding it to a name in the registry. The client object, in

turn, can check for availability of an object by looking up its name in the registry. The registry acts as a

limited central management point for RMI. The registry is simply a name repository. It does not address

the problem of actually invoking the remote method.

 The two objects may physically reside on different machines. A mechanism is needed to transmit the

client's request to invoke a method on the server object to the server object and provide a response.

RMI uses an approach similar to RPC in this regard. The code for the server object must be processed by

an RMI compiler called rmic, which is part of the JDK.

 The rmic compiler generates two files: a stub and a skeleton. The stub resides on the client machine and

the skeleton resides on the server machine. The stub and skeleton are comprised of Java code that

provides the necessary link between the two objects.

 When a client invokes a server method, the JVM looks at the stub to do type checking (since the class

defined within the stub is an image of the server class). The request is then routed to the skeleton on the

server, which in turn calls the appropriate method on the server object. In other words, the stub acts as

a proxy to the skeleton and the skeleton is a proxy to the actual remote method.

3.3 Design patterns
The RemoteControlRelay system uses 4 design patterns for conveniently

organizing the code and facilitating the programing process. Design

patterns provide simple and proven solutions to frequent programming

problems. The following text describes the patterns chosen for this system,

the reasoning behind it, and their purpose.

3.3.1 Model-View-Controller
The Model-View-Controller design pattern is created to split application concerns into separate packages, so as

to make the code more readable and editable in the future.

It is not necessary to have a model on the client side, because the client runs only when the connection to the

sever model is successful. The model on the server side i s very specific. It has an indirect connection to the relays,

through an Arduino board, a very flexible and easily programmable piece of hardware. The model is also

connected to the database, through the database handler.

The MVC implementation includes two controllers, one for the server and one for the client. The server

controller is further separated into two controllers: one containing methods accessible to the client controller

(for the client view), and another containing methods exclusive to the server view. The purpose of the client

controller is to allow users to manipulate the model, which then ensures that all necessary changes are made to

the view.

Group 10 RemoteControlRelay 13

Initially, there was some confusion about implementing this pattern on both the client and server side,

specifically the model package, but a written email to Ralph E. Johnson, author of the textbook Design Patterns:

Elements of Reusable Object-Oriented Software cleared up this problem.

This was his response.

"Just because you use a pattern like MVC in one part of a program doesn't mean you have to use it in another.

In the original MVC, each is connected to each other. That is because the View is the observer of the Model.

When the model changes state, the view updates without going through the controller. The controller only

handles user events. When the model changes, it notifies all its views (observers) and they update themselves

by communicating directly with the model.

Even if the second object does not have any other use inside the program. Even if it doesn't store any data.

But in fact, controllers usually store some data. They have a state. Controllers are often a state machine. They

map user actions into operations on the model. Just like the view maps the state of the model into a picture on

a display."

3.3.2 Observer
The basic idea of this pattern is to update all observers (clients which need to

be updated) when the subject is modified. Therefore, it is used in cases when

there is a one-to-many relationship present. In this system, there are many

clients and only one server. This pattern was decided on because of the need

to have real time features in all client views. More specifically, intended for

indicators of whether certain appliances are turned off or on. It is essential to

present the information in real time because if, for example, one of several

clients connected turns on a device, the others should be notified immediately

of the updated state, via the interface indicators.

3.3.3 Iterator
This pattern is used to get a way to access the elements of a collection object in sequential manner without any

need to know its underlying representation.

The Iterator is used in unison with the Observer pattern for traversing the list of clients and performing updates

on each of them.

3.3.4 Singleton
The main goal of the singleton pattern is to ensure that there is only one instance of an object available. In this

system there should be only one server interacting with many clients. This is the reason for including a singleton

on the server side.

The implementation of this pattern consists of making the constructor private and writing another method which

will create an instance of the object, or return the instance, in case it already exists. The pattern can be found in

the server controller class.

Group 10 RemoteControlRelay 14

3.4 Database design
The system requires a database that stores user accounts and activity logs. Figure 6 illustrates the two tables

which make up the database. The User table stores account information, such as username, password, and

access rights, while the History table keeps track of user actions.

History:

 Name: the user name.

 Port: the number of the port which has been changed.

 Action: action performed by the user (ON/OFF).

 Date: the date and time when the action was performed.

User:

 Name: the user name (primary key).

 Pass: the password.

 Controls: the ports which the user can control.

Since critical user information is stored in the database (passwords), security measures need to be taken. The

system is protected by one encryption algorithm which encrypts the password stored in the database, and one

hashing algorithm which secures the password during the login process. Further explanations about system

security can be found in Section 3.7 and Section 4.3.

Figure 6 - Table History and Table User

Group 10 RemoteControlRelay 15

3.5 GUI Design

3.5.1 Client GUI
The client application window consists of two main parts: login and control. The left side is used for logging in

and out of user accounts in the system, while the right side of the program provides user-friendly control with

real-time port state indication. Port names are updated at each start of the client application. After a successful

login, the buttons corresponding to the available ports for this individual user become clickable.

History

The history panel can be accessed from both the server and the client application window, regardless of the

user’s login status. It contains a big scrollable, non-editable text field where all user activities are displayed. The

data is organized into a table of actions, each one described by the username, port number whose state was

changed, the state it was changed to, and the date and time the action was performed. It is also possible to show

history in a specific date range by choosing or inputting the number of days it should cover into the combo box in

the upper left corner. On the right side there are two buttons: one for refreshing the history and another to going

back to the main view.

Figure 7 - Client GUI Logged In

Figure 8 - Client GUI History

Group 10 RemoteControlRelay 16

3.5.2 Server GUI
The server application window provides user-friendly interaction with the system. A panel with buttons for

controlling the serial link is placed on the top side of the application window. Through this, the administrator is

able to create the serial link and start/stop the communication with Arduino. The bottom part of the window

consists of a section used to control all operations regarding the users (adding, deleting, viewing and updating),

as well as a button to display all user history.

Figure 9 - Server GUI Main

Group 10 RemoteControlRelay 17

3.6 Hardware

3.6.1 Relay
A relay is an electrically operated switch. It uses an electromagnet to mechanically operate a switch. Relays are

often used when it is necessary to control a circuit with a low-power signal (with complete electrical isolation

between control and controlled circuits).

It has usually 5 pins:

 Input 1 and Input 2 - terminals directly connected to the electromagnetic coil.

 COM - Common terminal

 N/C - Normally closed terminal

 N/O - Normally opened terminal

COM is usually connected to N/C, therefore the circuit between these terminals is usually closed (Figure 10).

When power (5V) is connected to the input terminals (+ and -), the current flowing through the coil produces an

electromagnetic field which attracts the metal contact connected to the COM terminal. The contact moves away

from N/C contact and towards the N/O terminal. When they touch, the circuit between COM terminal and N/O

terminal is closed and a connection established (Figure 11).

In other words, circuits carrying up to 220V can be interrupted with only 5V. These 5V can be acquired from

Arduino’s output pins.

Figure 10 - Relay (connected)

Figure 11 - Relay (disconnected)

Group 10 RemoteControlRelay 18

3.6.2 Arduino
The whole logic of switching devices is inside the hardware aspect of this system. The most important hardware

part is the Arduino UNO running a code programmed in the Processing programming language which reads

values from the serial communication and compares them with predefined values. Each number that is sent by

the program represents one state of the output port. Arduino then changes the state of individual ports

according to the numbers that are received.

Output ports (digital output pins of Arduino) can have two states:

●LOW - 0V ●HIGH - 5V

Those output ports can be connected to relays which are then switched ON or OFF according to ports states.

In this implementation it is able to control 4 ports, however not all of them are connected to relays. This

implementation is used for presentation purposes for better understanding the principle:

Port #1 A LED diode in series with a current limiting resistor is connected directly to the first port to symbolize

the changing state of the first digital output pin.

Port #2 Port is connected to the relay module which simulates the press of the button on a wireless radio-

controlled relay transmitter. This transmitter is able to change state of a relay which is inside the receiver

module. Thus it is able to control power in the cable remotely.

Port #3 Connected to the relay. Relay is prepared to be connected to a device.

Port #4 Connected to the relay. Relay is used as a switch to a simple circuit. This circuit contains 2 LEDs, resistor

and 2 AA batteries used to power the circuit. The main purpose of this circuit is to show that it can be opened

and closed, although it is isolated from the Arduino.

Figure 12 - Arduino

Group 10 RemoteControlRelay 19

3.7 System security
The system implements two important features to make it secure:

 Database Password Encryption

 Client Login Hash Function

3.7.1 Database Password Encryption
When the administrator registers new users, their passwords are run through Advanced Encryption Standard

(AES) before being stored. This is done using a special key only the java system knows.

Figure 13 - Encrypted Passwords in the Database

The administrator can still see user passwords in the server side application window. This is achieved by

decrypting the passwords, using the same key, as they are retrieved from the database.

3.7.2 Client Login Hash Function
When a client logs in, the entered password is hashed using the MD5 cryptographic hash function. The resulting

hash is then sent over the network to the server side.

The server side decrypts the password from the database and runs it through the same MD5 cryptographic

function. This hash is then compared with the hash version of the password which the user typed. If the two of

them match, then the user’s entry is correct and the login is successful.

Group 10 RemoteControlRelay 20

4. Implementation

This section explains in more detail how the client server system, design patterns, and system security were

implemented. The process for each of these key system components is described step-by-step with diagrams and

sections of code for clarification.

4.1 Client-Server System: RMI
Implementing RMI consists of defining a remote server interface (RelayControlObservable), which extends the

java.rmi.Remote interface, then declaring a server class which implements this interface and its methods

(ServerController). The server must use the rmiregistry command to create and start a remote object registry

and bind it to a name. The client must then call the Naming.lookup() function to obtain a reference to the

remote object and be able to invoke methods on the reference.

The diagram below represents the RMI implementation in this system, but does not include all of the

methods/variables used in the interfaces and classes, only the more relevant ones for this topic.

Figure 14 - RMI diagram

1. Creating the RelayControlObservable remote interface

The purpose of this interface is to declare all the methods the client(s) will be able to call remotely. It extends the

java.rmi.Remote interface, and each method declares a java.rmi.RemoteException in its throws clause.

public interface RelayControlObservable extends Remote {

 public boolean turnOn(int port, String username) throws RemoteException;
 public boolean turnOff(int port, String username) throws RemoteException;
 public int[] check() throws RemoteException;
 public String[] getPortNames() throws RemoteException;
 public int[] login(String username, char[] password) throws RemoteException;
 public String getHistory(String range) throws RemoteException;

 public void addObserver(Observer observer) throws RemoteException;
 public void deleteObserver(Observer observer) throws RemoteException;
 public void notifyClients() throws RemoteException;
}

Group 10 RemoteControlRelay 21

2. Creating the ServerController class

The ServerController class implements the above remote interface and extends java.rmi.UnicastRemoteObject.

All interface methods are implemented and declare a RemoteException. This class also consists of a record()

method, which is only available locally.

In the server class implementation, the startServer() method uses the rmiregistry command creates and starts a

remote object registry on port 1099. It then uses the remote object registry and invokes the

java.rmi.Naming.rebind() function to bind remote objects to the “messageServer” name.

3. Creating the ClientController class

The client class also uses the remote object registry, but summons the java.rmi.Naming.lookup() function to look

up remote objects on port 1099, bound to the “messageServer” name and make remote method invocations.

@SuppressWarnings("unused")
 public void startServer()
 {
 try
 {
 Registry reg = LocateRegistry.createRegistry(1099);
 Naming.rebind("messageServer", this);
 System.out.println("Starting server...");
 }
 catch (RemoteException | MalformedURLException e)
 {

JOptionPane.showMessageDialog(null, "Server is already running.",
"Server Instance Running", JOptionPane.ERROR_MESSAGE);

 System.exit(0);
 e.printStackTrace();
 }
 }

public boolean connect(String ip)
 {
 try
 {

server = (RelayControlObservable) Naming.lookup("rmi://" + ip +
+ ":1099/messageServer");

 server.addObserver(this);
 return true;
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 return false;
 }
 }

Group 10 RemoteControlRelay 22

4.2 Design patterns

4.2.1 Model-View-Controller

4.2.1.1 Model package, Server Side

In this system, the model package is only on the server side. The connection to the Arduino is handled there. The

model includes one class “Arduino.java” (there is also a Mediator package that is considered as part of the

model, reviewed separately). There are 3 variables:

The serialPort object makes communication over wired connection to the Arduino possible from the server.

The check variable is a 4-element integer array designed for checking whether the ports are turned on or off. If

it holds the value 1, the port is active, if it holds 0 – it means it is inactive. For example check[2]=1 means that

port number 3 is turned on. The portNames variable is a String array containing the names of individual ports

(for example: “heating” or “kitchen light”). The names can be set to anything to make the ports easily reachable.

The openPort and closePort methods above work with the serialPort object and manage the hardware

connection, as well as the data transfer.

The turnOn and turnOff methods actually send commands to the Arduino to turn on/off the connected relays

and, thus, the appliances. The port parameter, an integer value, is there to specify which port will be switched

on/off. Then the corresponding integer value is sent to the Arduino over the serial connection.

In conclusion, the model package represents the hardware part of the system embodied in java code.

4.2.1.2 View package, Server and Client

The system has two views. One for the server side, and one for the client side. The one on the server side is in the

“server.view” package and is represented by “ServerGUI.java” class. The Server GUI is connected to the

DatabaseHandler via the controller (ServerMethods class). It is connected to the database to be able to control

competencies, show history, register users, etc. Therefore, the ServerGUI contains an instance of the server

methods class:

public static SerialPort serialPort;

private int[] check;

private String[] portNames = new String[4];

public static void openPort(){…};

public static void closePort(){…};

public boolean turnOn(int port) throws RemoteException{…};

public boolean turnOff(int port) throws RemoteException{…};

serialPort.writeInt(2+48);

private ServerMethods serverMethods = new ServerMethods();

Group 10 RemoteControlRelay 23

So, in the case of registering a new user, for example, only the referential method is called:

Since the system uses referential methods like this one, the GUI has no direct influence towards controlling the

database. The visual aspects are created using JButtons, JLabels, JPanels etc. Here are some examples:

After all the elements are created, implementing the actual methods consists of adjusting their visibility inside

the methods, as seen in the code below for the showHistory method.

In this figure the visibility of the history panel is set to true, while the other elements, unrequired at the moment,

are hidden.

In conclusion, the ServerGUI class only handles the visual elements. To access the functionality of the program,

an instance of the ServerMethods class is available as the middleman to the DatabaseHandler.

Similarly, there is a view class on the client side. The class is in the “client.view” package and is named

“ClientGUI.java”. The implementation logic is very similar to the server’s. The class has JButtons, JTextFields etc.

and a ClientController object:

The client object is the connection to the client controller. That way the view has no influence on the business

logic of the system. Another important variable is:

Keeping track of whether a user is logged in or not is done using this variable. This is also used to manage some

key visual elements.

serverMethods.register(name, password, competencies)

private JPanel registerPanel = new JPanel();

private JButton btnHistory = new JButton("HISTORY");

 private JLabel lblUsername = new JLabel("username");

public void showHistory()

 {

 panel1.setVisible(false);

 panel2.setVisible(false);

 server.setVisible(false);

 registerPanel.setVisible(false);

 progressBar1.setVisible(false);

 progressBar2.setVisible(false);

 btnHistory.setVisible(false);

 historyPanel.setVisible(true);

 refreshHistory();

 }

private ClientController client;

private boolean loggedIn = false;

Group 10 RemoteControlRelay 24

4.2.1.3 Controller Package, Server and Client

The system has two controllers, one for the server and one for a client. In the server controller package there are

5 classes – the interface, two classes regarding the iterator pattern, the server controller itself –

ServerController.java class, and the ServerMethods.java class. The server controller acts as a

middleman between the server GUI and both – the database and the Arduino. The server controller class is

intended for communicating with a client and the server methods class for the server view. To have a connection

to the other parts of the system in the server controller, it is necessary to have an instance for each:

In this system, if a server is started, it is started through the controller class. Connection to the Arduino and the

database is already started in the variables declaration and the GUI is started by the constructor:

The server controller is a singleton in this case, therefore the getInstance() method is also stated. When the

server is started, the registry is also created. If a user tries to open the server twice, exception is handled. The

error window would be shown in that case:

private DatabaseHandler database = new DatabaseHandler();

private Arduino arduino = new Arduino();

private ServerGUI window;

private ServerController() throws RemoteException

{

super();

 startServer();

 window = new ServerGUI();

 window.frame.setVisible(true);

 observers = new ArrayList<Observer>();

}

public void startServer()

{

try

{

 Registry reg = LocateRegistry.createRegistry(1099);

 Naming.rebind("messageServer", this);

 System.out.println("Starting server...");

}

catch (RemoteException | MalformedURLException e)

{

JOptionPane.showMessageDialog(null, "Server is

 already running.", "Server Instance Running",

 JOptionPane.ERROR_MESSAGE);

 System.exit(0);

 e.printStackTrace();

 }

}

Group 10 RemoteControlRelay 25

Other methods included are referential to the model, such as:

There are also referential methods to the database handler. More details about the referential methods can be

found in the model and mediator part of this report. The other methods included in the server controller are

regarding the iterator and the observer pattern.

The server methods class is a connection to the database handler and also to the model. As mentioned before, in

compare to the server controller class, it is intended just for the server view purposes. The methods are

referential to the model and the database. The link to the database handler is in the instance:

And the connection to the Arduino part of the model is in the constructor:

The controller package on the client side contains two classes, the interface (important for the observer

functionality) and the ClientController class. That is necessary to manage a connection to the GUI and the

server (remote connection). The view is created in the constructor:

@Override

public int[] check() throws RemoteException

{

 return arduino.check();

}

@Override

public String[] getPortNames() throws RemoteException

{

 return arduino.getPortNames();

}

private DatabaseHandler database = new DatabaseHandler();

public void startSerialCommunication(String port)

{

 Arduino.serialPort = new SerialPort(port);

}

public ClientController() throws RemoteException

{

 super();

 clientGUI = new ClientGUI(this);

 clientGUI.frame.setVisible(true);

 this.username = null;

}

Group 10 RemoteControlRelay 26

The remote connection to the server is established in the following method:

It is done in the separate method (not in the constructor) because the method is called from the view, when a

user is asked to enter the IP of the server. The other methods are referential to the server, they pass data

from/to the view. The only other method is the update method for the observer functionality.

4.2.1.4 Mediator package

In the mediator package, there is just a single class – DatabaseHandler.java. In the database handler all the

functionality of the database management is implemented because it is the only class directly connected to the

database. Basically the handler executes MySQL queries. To picture the process here is the example of the

method which is called if the user should be unregistered:

As pictured above, the name from the parameter is inserted in the query instead of the question mark. The query

is than send to the database and executed.

public boolean connect(String ip)

{

try

 {

server = (RelayControlObservable) Naming.lookup("rmi://" + ip +

 ":1099/messageServer");

 server.addObserver(this);

 return true;

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 return false;

 }

}

public boolean unregister(String name)

{

 try

 {

 sql = "DELETE FROM `users` WHERE `name` = ?;";

 update(sql, name);

 }

 catch (SQLException e)

 {

 e.printStackTrace();

 return false;

 }

 return true;

}

Group 10 RemoteControlRelay 27

The connection to the database is established in the handler’s constructor. If the database does not exist it is

automatically created:

To improve security of the system, an AES encryption is used. The password is stored in the database in the

encrypted form. Even if someone would hack the access to the database, it won’t be possible to read the

passwords.

The password is never transferred through the network in its readable form. This method is used for creating

hash from the decrypted password from the database so it can be compared with client’s hash.

In conclusion mediator handles all the database functionality through sending queries and returning result tables.

public DatabaseHandler()

{

 super();

 try
 {
 Class.forName(driver);
 connection = DriverManager.getConnection(url, user, password);
 }
 catch(ClassNotFoundException e)
 {
 System.out.println("MySQL driver not found");
 }
 catch(SQLException e)
 {
 System.out.println("DATABASE NOT FOUND");
 createDatabase();
 }

public char[] md5e(char[] password) throws NoSuchAlgorithmException

{

 MessageDigest md = MessageDigest.getInstance("MD5");

 md.update(new String(password).getBytes());

 byte[] digest = md.digest();

 StringBuffer sb = new StringBuffer();

for (byte b : digest)

 {

 sb.append(String.format("%02x", b & 0xff));

 }

 return sb.toString().toCharArray();

}

Group 10 RemoteControlRelay 28

4.2.2 Observer
The Observer pattern is used, in this system, to update the Client GUIs when changes are made in the model’s

state. Specifically, it will update the displayed state of the ports each time they are turned on or off. Thus, an

Observable party is required, along with one or more Observers.

The diagram below represents the Observer implementation in this system, but does not include all of the

methods/variables used in the interfaces and classes, only the more relevant ones for this topic.

Figure 19. Observer diagram

Since the model is on the server side, the Observable object will also be implemented there. The subject

maintains a collection of Observers and notifies them of its changes, so they may change their own state to

reflect this.

Group 10 RemoteControlRelay 29

1. Interface for the subject: RelayControlObservable

The RelayControlObservable interface specifies the methods which the Subject must implement. It consists of,

among others, three fairly straight forward methods relating to the observer pattern: addObserver,

deleteObserver, and notifyClients.

2. Interface for the Observer and Observer class

The Observer interface only contains one method, update, and extends the java.rmi.Remote class since RMI is

used to connect the observers and subject.

The ClientController class implements the Observer interface and its update method. This method calls the

updateCheck method in the clientGUI class, which refreshes the displayed port states (TURN ON button with red

square or TURN OFF button with green square).

@Override
 public void update() throws RemoteException {
 clientGUI.updateCheck();
 }

public interface RelayControlObservable extends Remote {

 //… a few other methods

 public void addObserver(Observer observer) throws RemoteException;
 public void deleteObserver(Observer observer) throws RemoteException;
 public void notifyClients() throws RemoteException;
}

public interface Observer extends Remote {

 public void update() throws RemoteException;
}

Group 10 RemoteControlRelay 30

3. Subject class

The ServerController class implements the RelayControlObservable interface methods, along with more of its

own. The addObserver method adds one more Observer to the ArrayList, while the deleteObserver method

removes a specific observer from the ArrayList. The notifyClients method iterates through the ArrayList and calls

the update method for each client Observer.

Thus, for every method which changes the model’s state and is reflected in the client GUI, notifyClients must be

executed in the method. This can be seen, for example, in the turnOn method in the ServerController subject.

@Override
 public void addObserver(Observer observer) {
 this.observers.add(observer);
 }

 @Override
 public void deleteObserver(Observer observer) {
 this.observers.remove(observer);
 }

 @Override
 public void notifyClients() {

ArrayList<Observer> temporaryArrayList = new ArrayList<Observer>();

 Iterator iterator = getIterator();

 while (iterator.hasNext())
 {
 Observer temporaryObserver = (Observer) iterator.next();
 try
 {
 temporaryObserver.update();
 temporaryArrayList.add(temporaryObserver);
 }
 catch (RemoteException e)
 {
 e.printStackTrace();
 }
 }
 }

@Override
 public boolean turnOn(int port, String username) throws RemoteException {
 if (arduino.turnOn(port, username))
 {
 record(username, port, "ON");
 notifyClients();
 return true;
 }
 else
 {
 return false;
 }
 }

Group 10 RemoteControlRelay 31

private class ServerControllerIterator implements Iterator {

 int index = 0;

 public boolean hasNext() {
 if (index < observers.size())
 return true;

 return false;
 }

 public Observer next() {
 if (this.hasNext())
 return observers.get(index++);

 return null;
 }

 }

4.2.3 Iterator
Iterator pattern is used to provide a standard way to traverse through a group of Objects. In this case it is a list of

Observers.

The first step of the implementation is to create an interface which narrates navigation methods.

Next an Iterable interface needs to be created. This interface will contain only one method which is responsible

to return the Iterator object.

In the following step a private class named ServerControllerIterator is created inside ServerController class. The

inner class will implement the Iterator interface.

package server.controller;

public interface Iterable {

 public Iterator getIterator();
}

package server.controller;

public interface Iterator {

 public boolean hasNext();
 public Object next();
}

Group 10 RemoteControlRelay 32

In order to use the Iterator object, an Iterable interface needs to be implemented in the ServerController class

and getIterator() method has to be overridden.

Last but not least, Iterator object needs to be created inside notifyClients() method and use it to update the

observers. Explanation of the notifyClients() method is below.

The aim of notifyClients() method is to notify the Users when the states of the ports change. The following

methods works like this:

1. A List is created that has as purpose to store the updated observers.

2. An Iterator object is created.

3. A loop with the argument iterator.hasNext() is used to stop the iterator from going out of the observer

collection.

4. A temporary Observer object is created to store a unique object.

5. The Observer object is updated and stored in the List created at Step 1.

public Iterator getIterator() {

 return new ServerControllerIterator();
 }

public void notifyClients() {

 1. ArrayList<Observer> temporaryArrayList = new ArrayList<Observer>();

 2. Iterator iterator = getIterator();

 3. while (iterator.hasNext())
 {
 4. Observer temporaryObserver = (Observer) iterator.next();

 try
 {
 temporaryObserver.update();
 5. temporaryArrayList.add(temporaryObserver);
 }
 catch (RemoteException e)
 {
 e.printStackTrace();
 }
 }

 }

Group 10 RemoteControlRelay 33

4.2.4 Singleton
The Singleton's purpose is to control object creation, limiting the number of instances to a single one. In this

system, the pattern will solve the problem of creating multiple ServerControllers. Instead, the Singleton pattern

will provide global access to one instance of the ServerController class.

1. The first step is to make the constructor of the ServerController class private.

2. Next step is to create a static instance of the ServerController class and assign it to null.

3. To make sure that the singleton instance is only created once, a static getInstance() method is implemented.

This method returns the singleton instance if it is already created.

public static ServerController getInstance() throws RemoteException
 {
 if (instance == null)
 {
 instance = new ServerController();
 }
 return instance;
 }

public class ServerController extends UnicastRemoteObject implements
RelayControlObservable, Iterable {

 private static final long serialVersionUID = 1L;

 private static ServerController instance = null;
 private DatabaseHandler database = new DatabaseHandler();
 private Arduino arduino = new Arduino();
 private ArrayList<Observer> observers;
 private ServerGUI window;

private ServerController()
 {
 super();

 startServer();

 window = new ServerGUI();
 window.frame.setVisible(true);

 observers = new ArrayList<Observer>();
 }

Group 10 RemoteControlRelay 34

4.3 System security

4.3.1 Database Password Encryption
When the administrator registers new users, their passwords are sent to the database to be processed using AES

encryption with a special key.

The administrator can retrieve a list of users and their actual (unencrypted) passwords in the application window.

This is done by decrypting the passwords using the same key and using a SELECT statement.

sql = "INSERT INTO `users` (`name`, `pass`, `controls`)
VALUES (?,AES_ENCRYPT(?, 'rcrelay'),?)
ON DUPLICATE KEY UPDATE pass=AES_ENCRYPT(?, 'rcrelay'), controls=?";

update(sql, name, String.valueOf(password), controls, String.valueOf(password),

controls);

public String getUsers()
 {
 String users = "";

 try
 {

preparedStatement = connection.prepareStatement(
"SELECT *, AES_DECRYPT(pass,'rcrelay') FROM users");

 resultSet = preparedStatement.executeQuery();

 while (resultSet.next())
 {
 users += resultSet.getString(1) + "\t\t"

+ resultSet.getString(4) + "\t"
+ resultSet.getString(3) + "\n";

 }
 }
 catch (SQLException e)
 {
 e.printStackTrace();
 }

 return users;
 }

Group 10 RemoteControlRelay 35

public char[] md5e(char[] password) throws NoSuchAlgorithmException
{

MessageDigest md = MessageDigest.getInstance("MD5");
md.update(new String(password).getBytes());
byte[] digest = md.digest();
StringBuffer sb = new StringBuffer();

for (byte b : digest)
{

sb.append(String.format("%02x", b & 0xff));
}

return sb.toString().toCharArray();

}

…
pw = md5e(resultSet.getString(4).toCharArray());

4.3.2 Client Login Encryption
When a client logs in, the entered password is hashed. The MessageDigest class provides the functionality of a

message digest algorithm. In this implementation, the program is using an MD5 cryptographic hash function.

The server side decrypts the password from the database using AES Decryption as a part of Database Password

Encryption. Afterwards, the returned password is send to the same MD5 cryptographic function to create a 16-

byte hash in the form of a 32 digit hexadecimal number. This number is then compared with the hashed

password from the user. If they are a match, the login is successful.

Group 10 RemoteControlRelay 36

5. Testing

Testing is one of the most crucial aspects of developing any system. It is needed to ensure that the implemented

functionality matches the initial requirements. It provides a detailed picture of the system and decreases the

likeliness of blind spots and errors. Internal tests were performed before the final release of the

RemoteControlRelay system.

In this test, the internal structure of the system remains a “black box”. For the tester, it is only needed to know

what the expected response as a consequence of the input should be. All tests are based on the use case

descriptions (Section 2.1.3 and Appendix A). This test checks that the system follows the use case base and

exception sequences as the tester inputs both valid and invalid content.

Below is an overview of all the requirements the system must adhere to and the results of their testing.

Use Case Test Result
Log In Working as expected
Log Out Working as expected

Control Ports Working as expected
Register/Update User Working as expected

Delete User Working as expected

Show User Working as expected

Show History Working as expected

Start/Stop Serial Communication Working as expected

Group 10 RemoteControlRelay 37

In the following table, test results from the Login use case are presented. More detailed results for the rest of the

use cases can be found in Appendix D.

Action Description Expected Result Final Result

Log in

The User inputs a legal
username and password.

The ports available for
the account are loaded
in the Device panel.

Working as
expected

The User inputs an illegal
username and password.

Username and password
text fields are cleared
and a “wrong
credentials” message is
display below them.

Working as
expected

The User inputs an illegal
username.

Username and password
text fields are cleared
and a “wrong
credentials” message is
display under them.

Working as
expected

The User inputs an illegal
password.

Username and password
text fields are cleared
and a “wrong
credentials” message is
display under them.

Working as
expected

The User inputs the username
only.

Username text field is
cleared and a “wrong
credentials” message is
display under it.

Working as
expected

The User inputs the password
only.

Password text field is
cleared and a “wrong
credentials” message is
display under it

Working as
expected

The User does not input a
username and password.

A “wrong credentials”
message is display under
the password text field

Working as
expected

This table covers all the scenarios possible for the login use case, including when the username and password are
incorrect, when only one of the credentials is specified, etc. Conducting such thorough tests minimizes the
chances of encountering problems when further developing the system.

Group 10 RemoteControlRelay 38

6. Discussion

While the system is indeed ready to be deployed, with all the intended features implemented and working as

expected, there are some considerations to be made. First of all, the installment of the hardware part of the

system requires some skill. Although this is a limitation to anyone wanting to do it themselves, it is not

uncommon for home automation systems to offer this service as part of their product.

A notable feature of the system is that it allows multiple accounts, each with customizable access rights, in a

single household. Also, having separate interfaces for the server and client side ensures that specific actions are

only available for the Administrator of the system. The users should only be concerned with controlling devices

from their GUIs, which was designed to be simple and easy to understand.

A number of improvements can be considered for future version of the RemoteControlRelay system. An obvious

possibility would be to implement more control over device settings, rather than just have the option of turning

on or off. Another idea is to increase the number of ports and, thus, the number of devices which can be

connected. Another improvement would be to customization options to the history view, such as sorting by user,

action, or device, displaying statistics, etc.

In the future, the hardware component could also be upgraded to a more compact size and be connected to the

server wirelessly.

All of these features would have been implemented if there were more time available, but even now, all the

requirements and objectives have been accomplished and the RemoteControlRelay system is working and ready

for deployment.

Group 10 RemoteControlRelay 39

7. Conclusion

The project proposed for this semester was one of great interest to all members of this team. It started

with a relatively vague idea, but progressed to a fully functioning and easy to use system. The initial

idea was taken and reformed, research was done, and the system began to take shape. Analyses then

had to be done, to determine the requirements, and further derive the use cases and activity diagrams.

After that, much consideration had to be put into designing system. Questions like: Which design

patterns to incorporate and where? What connection type? How should the database look? How should

the interface look? Were answered. Also, the hardware aspect of the system was then decided upon.

The first version of the class diagram soon emerged. While coding the classes, many alterations had to

be made in the model diagram. After each section of code was implemented, tests had to be run to

ensure it was working as planned and fix any unexpected surprises. New elements were added to the

system, which were not proposed in the project’s inception . System security was implemented in the

form of encrypting passwords before storing and using a hash algorithm during the login process.

Each step over the course of development was documented as well as possible. In the end, what is left

is a fully functioning client server system, using RMI, facilitated with design patterns, which allows users

to connect and control devices in their homes remotely.

Group 10 RemoteControlRelay 40

8. References

[1] Serialization, http://www.tutorialspoint.com/java/java_serialization.html, December 2014.

[2] Relay, http://en.wikipedia.org/wiki/Relay

[3] MVC, http://www.tutorialspoint.com/design_pattern/mvc_pattern.htm

[4] RMI, http://www.javacoffeebreak.com/articles/javarmi/javarmi.html

[5] Iterator, http://www.tutorialspoint.com/design_pattern/iterator_pattern.htm

[6] Singleton, http://www.javaworld.com/article/2073352/core-java/simply-singleton.html

[7] Control4™, http://www.control4.com/

[8] Vera™, http://getvera.com/

[9] Black Box testing, http://www.softwaretestinghelp.com/black-box-testing/

[10] RMI, http://www-itec.uni-klu.ac.at/~harald/ds2001/rmi/rmi.html (accessed 24.05.15)

[11] Use Case Diagrams: http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

[12] Database creation: http://stackoverflow.com/questions/717436/create-mysql-database-from-java

[13] Study material from SDJI2, CONI1, RDBI1.

http://www.tutorialspoint.com/java/java_serialization.html
http://en.wikipedia.org/wiki/Relay
http://www.tutorialspoint.com/design_pattern/mvc_pattern.htm
http://www.javacoffeebreak.com/articles/javarmi/javarmi.html
http://www.tutorialspoint.com/design_pattern/iterator_pattern.htm
http://www.javaworld.com/article/2073352/core-java/simply-singleton.html
http://www.control4.com/
http://getvera.com/
http://www.softwaretestinghelp.com/black-box-testing/
http://www-itec.uni-klu.ac.at/~harald/ds2001/rmi/rmi.html
http://www.agilemodeling.com/artifacts/useCaseDiagram.htm
http://stackoverflow.com/questions/717436/create-mysql-database-from-java

APPENDIX

APPENDIX A

USE CASE
DESCRIPTIONS

RemoteControlRelay System

USE CASE: RegisterUser

Name: RegisterUser

Actors: Administrator

Summary: The Administrator registers a new user into the system.

Precondition: The user is not already registered in the system.

Base sequence:

1. The Administrator types in the user name.

2. The Administrator types in the user password.

3. The Administrator selects the access rights for user.
4. The Administrator presses Register/Update button.

5. The system adds the new user to the database.

6. The system displays an updated list of registered

users.

Exception

sequence:

At 4.

The admin did not type in a new username and/or

password.

System does not register any new user. System
displays username and/or password fields with red

background. Admin must try again.

Postcondition: A new user is registered in the system, with username,
password, and access rights.

USE CASE: DeleteUser

Name: DeleteUser

Actors: Administrator

Summary: The Administrator deletes a user from the database.

Precondition: The user already exists in the database.

Base sequence:

1. The Administrator fills in the username field.

2. The Administrator presses the Delete button.

3. The system removes the user from the database.
4. The system displays an updated list of registered

users.

Exception
sequence:

At 2.

The admin did not type in an existing username.

System will display a list of existing users, without

deleting any of them.

Postcondition: The specified user is deleted from the database.

USE CASE: UpdateUser

Name: UpdateUser

Actors: Administrator

Summary: The Administrator makes changes regarding a user’s

password and/or access rights.

Precondition: The user is already registered in the system.

Base sequence:

1. The Administrator types in the user name.

2. The Administrator fills in the password field with

the new password.
3. The Administrator selects the new access rights.

4. The Administrator presses the Register/Update

button.

5. System updates user’s information.

6. The system displays an updated list of registered
users.

Exception

sequence:

At 4.

The admin did not type in an existing user or mistyped
the username, but filled in the password and selected

access rights.

System registers a new user.

Exception

sequence:

At 4.

The admin did not type in a username (or password).

System displays username fields with red background.

Admin must try again.

Postcondition: The selected user’s password and/or access rights

have been modified.

USE CASE: ViewUsers

Name: ViewUsers

Actors: Administrator

Summary: The Administrator sees a list of registered users.

Precondition: -

Base sequence:

1. The Administrator clicks the Show button.

2. The system displays an updated list of registered

users.

Exception

sequence:

At 1.

There’s a problem with the database connection.

He’s fucked.

Postcondition: -

USE CASE: Start/Stop Serial Communication

Name: Start/Stop Serial Communication

Actors: Administrator

Summary: The Administrator sees a list of registered users.

Precondition: Arduino is connected to the computer.

Base sequence:

1. The Administrator inputs the communication port

name (only on first start).

2. The Administrator clicks the Create button.
3. The system establishes the connection.

4. Administrator now has the possibility to Stop and

Start the connection.

Exception

sequence:

At 2.

Administrator specified the wrong communication port.

No connection is established. Admin must restart the

program and try again.

Postcondition: Connection is established between Arduino and the

system.

USE CASE: ViewHistory

Name: ViewHistory

Actors: Administrator

Summary: The Administrator sees a list of all user activities since

forever.

Precondition: -

Base sequence:

1. The Administrator clicks the History button.

2. The system displays an updated list of user activity

(including user, date, time, appliance and state)

Exception

sequence:

At 1.

There’s a problem with the database connection.

He’s fucked.

Postcondition: -

USE CASE: LoginUser

Name: ShowHistory

Actors: User

Summary: The user inputs a username and password to gain

access to the sytem.

Precondition: The user is registered in the system.

Base sequence:

1. The user fills in the username field.

2. The user fills in the password field.

3. The user clicks the Login button.
4. The system displays the account window.

Exception

sequence:

At 3.

The username or password is incorrect.

System displays wrong credentials message.

Postcondition: The user has access and can now use the system.

USE CASE: LogoutUser

Name: LogoutUser

Actors: User

Summary: The user presses a button and logs out of the system.

Precondition: The user is logged into the system.

Base sequence:

1. The user clicks the Logout button.

2. The system displays the main window.

Postcondition: The user has terminated access to his/her account,

but can still see the states of devices.

USE CASE: ControlAppliances

Name: ControlAppliances

Actors: User

Summary: The user presses buttons for the corresponding devices

to remotely control them.

Precondition: The user is logged into the system.

Base sequence:

1. The user selects which port to control.

2. The user clicks the TURN ON or TURN OFF button

(depending on the current state of the port).
3. The system turns on/off the device connected to

that particular port.

4. Change button according to next state. (If user

clicked TURN ON, after the action the button would

change to TURN OFF.
5. The system logs the action into the database.

Exception

sequence:

User

Postcondition: One or more device states have been modified, all

actions have been recorded in the database.

APPENDIX B

ACTIVITY
DIAGRAMS

RemoteControlRelay System

Register User

Delete User

View Users

View History

Start/Stop Serial Communication

Update User

Login User

Logout User

Control Devices

APPENDIX C

CLASS
DIAGRAMS

RemoteControlRelay System

APPENDIX D

TEST CASES

RemoteControlRelay System

Use Case: Log In

Action Description Expected Result Final Result

Log in

The User inputs a legal
username and password.

The ports available for
the account are loaded
in the Device panel.

Working as
expected

The User inputs an illegal
username and password.

Username and password
text fields are cleared
and a “wrong
credentials” message is
display below them.

Working as
expected

The User inputs an illegal
username.

Username and password
text fields are cleared
and a “wrong
credentials” message is
display under them.

Working as
expected

The User inputs an illegal
password.

Username and password
text fields are cleared
and a “wrong
credentials” message is
display under them.

Working as
expected

The User inputs the username
only.

Username text field is
cleared and a “wrong
credentials” message is
display under it.

Working as
expected

The User inputs the password
only.

Password text field is
cleared and a “wrong
credentials” message is
display under it

Working as
expected

The User does not input a
username and password.

A “wrong credentials”
message is display under
the password text field

Working as
expected

Use Case: Log Out

Action Description Expected Result Final Result

Log Out
The User presses the
“LOGOUT” button

The main windows is
refreshed. Text fields for
the username and
password appears and all
4 ports become
inaccessible.

Working as
expected

Use Case: Register/Update User

Action Description Expected Result Final Result

Register/Update
User

The Administrator inputs a
non-existing username, a legit
password and also selects
which ports the new account
should control.
(Register User)

The main window is
refreshed and a list of all
accounts appears.
(The account is
registered into the
database)

Working as
expected

The Administrator inputs an
existing username, a new
password and also selects
which ports the account
should control
(Update User)

The main window is
refreshed, and a list of
all accounts appears.
(The account is updated
with a new password
and access rights)

Working as
expected

The Administrator inputs an
existing username, the same
password and also selects new
ports which the account
should control
(Update User)

The main window is
refreshed, and a list of
all accounts appears.
(The account is updated
with new access rights)

Working as
expected

The Administrator inputs an
existing username, the new
password and also selects the
same access rights
(Update User)

The main window is
refreshed, and a list of
all accounts appears.
(The account is updated
with a new password)

Working as
expected

The Administrator inputs a
non-existing username, an
illegal password and also
selects which ports the new
account should control.
(Register User)

The username,
password fields are
cleared and they turn
red

Working as
expected

The Administrator inputs the
username only
(Register User/Update User)

Username text field is
cleared and it turns red.
The password text field
also turns red

Working as
expected

The Administrator inputs
password only
(Register User/Update User)

Password text field is
cleared and it turns red.
The username text field
also turns red

Working as
expected

The Administrator selects
which ports the account
should control. The text field
for username and password
remains empty.
(Register User/Update User)

Password and username
text field turn red

Working as
expected

The Administrator inputs an
empty username, password
and doesn’t select none of the
ports. (Register/Update User)

Password and username
text field turn red

Working as
expected

Use Case: Delete User

Action Description Expected Result Final Result

 Delete User

The User inputs an existing
username

The main window is
refreshed and a list of all
accounts appears.
(The account is deleted
from the database)

Working as
expected

The User inputs a non-existing
username

The main window is
refreshed and a list of all
accounts appears.
(Nothing is deleted)

Working as
expected

The Administrator inputs an
empty username

Nothing happens
Working as
expected

Use Case: Show Users

Action Description Expected Result Final Result

 Show Users
The Administrator presses
‘’USERS” button

The main window is
refreshed and a list of all
accounts appears.

Working as
expected

Use Case: Show History

Action Description Expected Result Final Result

 Show History
The Administrator/User presses
‘HISTORY” button

The main window is
refreshed and a list of all
accounts appears.

Working as
expected

Use Case: Start/Stop Serial Communication

Action Description Expected Result Final Result

Start/Stop Serial
Communication

The Administrator inputs a
legal communication port
name

In the Server panel,
state indicator turns
green

Working as
expected

The Administrator inputs an
illegal communication port
name

Nothing happens
Working as
expected

APPENDIX E

USERGUIDE
RemoteControlRelay System

2

Table of Contents

Start Serial Communication.. 3
Register a User ... 4
Update a User .. 5
Delete a User ... 6
Show Users .. 7
Show History .. 8
Control Devices .. 9

3

Start Serial Communication

To allow users to control devices, we need to start serial communication between the program and

Arduino. Only the system administrator can do this.

1. Make sure that Arduino is connected to the USB port of your computer.

2. Open RemoteControlRelay – Server.

3. Specify a correct COM port Arduino is connected to.

4. Press the CREATE button.

Communication link is created and started. Notice how the button changes from CREATE to STOP. You

can now Stop/Start the communication freely.

4

Register a User

To allow users to control devices, we need to register them into a database. Only the system

administrator can do this.

1. Open RemoteControlRelay – Server.

2. Enter a unique username and a password of maximum 4 characters.

3. Tick the boxes corresponding to the port numbers the user will be able to control.

4. Press the REGISTER/UPDATE button.

If the action is successfully completed, a window containing a table of all registered users (including the

new one) is displayed.

2 3 4

5

Update a User

The update function is used in cases when a user’s password must be changed or some modifications to

access rights must be made. Only the system administrator can do this.

1. Open RemoteControlRelay – Server.

2. Enter the username of an already registered user.

3. Enter a new password.

4. Tick the boxes corresponding to the port numbers the user will be able to control.

5. Press the REGISTER/UPDATE button.

As when registering a user,

the action is considered

successful if a new window

with a table of all registered

users is shown.

2

4 5

3

6

Delete a User

This action removes a user from the system, but maintains their records in the database. Only the system

administrator can do this.

1. Open RemoteControlRelay – Server.

2. Enter username of the existing user.

3. Press the DELETE button.

The user is no longer registered and the updated table of all users is displayed.

2

3

7

Show Users

Displays a table of all the users registered in the system, along with their passwords and access

rights.

1. Open RemoteControlRelay – Server.

2. Press the USERS button.

Result:

8

Show History

Displays a history log with all the actions performed by all users in the past two months. The table

specifies the user, the port, the action, and date/time. This action can be done from both server and

client side.

1. Open RemoteControlRelay – Server or RemoteControlRelay – Client.

2. Press the HISTORY button.

After history window is shown, the following actions are available:

choose date range

go back

refresh history

9

Control Devices

Shows how to login to an account and control devices remotely. The RemoteControlRelay – Server must

be running with a serial link created.

1. Start RemoteControlRelay – Client.

2. Specify the IP address of the server.

3. Press OK.

4. Enter a username and password.

5. Press the LOGIN button.

Communication with the server is established and the ports available for the account are

loaded. The restricted ports are displayed in gray.

10

3. Choose a port to control and press the corresponding TURN ON button. If the port is

already on, a TURN OFF button will be displayed instead.

The device connected to the port is turned on and indicators turns green.

4. Press the TURN OFF button to disable the device.

